

Letters

Comments on "Phase Shifts in Single- and Dual-Gate GaAs MESFET's for 2-4-GHz Quadrature Phase Shifters"

HANS-OLOF VICKES

In the above paper,¹ the authors have discussed the variation of transmission phase for single- and dual-gate GaAs MESFET's when the bias is changed.

In Section II of their paper, the authors have a discussion on bias-voltage variation that affects only the intrinsic elements of the equivalent circuit. Parasitics are therefore removed from the model and the authors end up with a resulting circuit (see Fig. 1 here). In using the circuit in Fig. 1, the authors present a transmission phase equation (eq. (1)) which is incorrect. The correct transmission phase is given by

$$\angle S_{21} = \pi - \tan^{-1}(A) - \tan^{-1}\left(\frac{x}{y}\right) \quad (1a)$$

where

$$A = \frac{\omega \tau_2 + \sin \omega \tau}{\cos \omega \tau + \omega^2 \tau_1 \tau_2}$$

$$x = \omega \left(\tau_3 \frac{G_{ds} + G_L}{g_{mo}} \cdot \frac{G_{ds}}{G_s} + \tau_1 \cdot \frac{G_{ds} + G_L}{g_{mo}} + \frac{C_{dg} + C_{ds}}{g_{mo}} + \frac{C_{dg}}{G_s} \cos \omega \tau \right) - \omega^3 \tau_1 \tau_2 \frac{C_{ds}}{G_s}$$

$$y = \frac{G_{ds} + G_L}{g_{mo}} + \omega \frac{C_{dg}}{G_s} \sin \omega \tau - \omega^2 \left(\tau_1 \tau_2 \cdot \frac{G_{ds} + G_L}{G_s} + \tau_1 \cdot \frac{C_{ds} + C_{dg}}{g_{mo}} + \tau_3 \cdot \frac{C_{ds} + C_{dg}}{g_{mo}} \cdot \frac{G_{ds}}{G_s} - \tau_2 \frac{C_{dg}}{G_s} \right)$$

τ = transit time in gate region

$$\tau_1 = R_i \cdot C_{gs}$$

$$\tau_2 = C_{dg} / g_{mo}$$

$$\tau_3 = (C_{gs} + C_{dg}) / G_{ds}$$

$$G_s = 1/R_s$$

$$G_L = 1/R_L$$

There seems to be a typographical error in the x function of the above paper. In the first parenthesis, the last plus sign should be a multiplication sign.

Manuscript received August 9, 1986.

The author is with Chalmers University of Technology, Division of Network Theory, S-412 96 Gothenburg, Sweden.

IEEE Log Number 8611618.

¹J. P. Mondal, A. G. Milnes, J. G. Oakes, and S.-K. Wang, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, pp. 1280-1288, Oct. 1984.

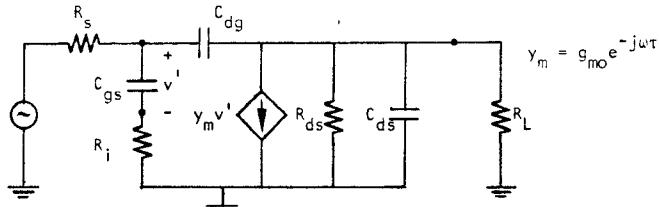


Fig. 1. Equivalent circuit.

TABLE I
COMPUTER RESULTS FOR TRANSMISSION PHASE

Frequency in GHz	Referenced paper ¹ $\angle S_{21}$ (degrees)	Correct formula $\angle S_{21}$ (degrees)
2.0	- 10.9735°	146.7010°
3.0	- 15.6446°	131.2912°
4.0	- 19.5384°	117.0236°
10.0	- 28.7725°	51.6532°
15.0	- 26.7011°	12.7215°
20.0	- 21.4983°	- 19.1093°

In Table I, computer results for the transmission phase are shown using element values in Fig. 2 of the paper in question with parasitics removed. Table I

Reply² by J. P. Mondal, A. G. Milnes,³ J. G. Oakes,⁴ and S.-K. Wang⁵

We thank Mr. Vickes for pointing out the mistake in the expression reported in our paper and for supplying the correct expression. In our actual calculations, the original Y -matrix elements were used in matrix form; therefore, the curves and the conclusions reported in the paper remain unaffected.

²Manuscript received September 27, 1986.

³J. P. Mondal and A. G. Milnes are with Carnegie Mellon University, Pittsburgh, PA 15213.

⁴J. G. Oakes is with the Raytheon Corporation, Northborough, MA 01532.

⁵S.-K. Wang is with the Hughes Aircraft Co., Torrance, CA 90509.

IEEE Log Number 8612198.